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Induced Circuits in Graphs on Surfaces

ALEXANDER SCHRIJVER

ABSTRACT. We show that for any fixed surface S there exists a
polynomial-time algorithm to test if there exists an induced circuit
traversing two given vertices r and s of an undirected graph G em-
bedded on S. (An induced circuit is a circuit without chords.) The
general problem (not fixing S) is NP-complete. In fact, for each fixed
surface S there exists a polynomial-time to find a maximum number of
r — s paths in G such that any two form an induced circuit.

1. Introduction

In this paper we show that the following problem is solvable in polynomial
time, for any fixed compact surface S:

(1) given: an undirected graph G = (V, E) embedded on S and
two vertices r and s of G;

find: an induced circuit in G that traverses r and s.

An induced circuit is a circuit having no chords. The problem is NP-complete
for general undirected graphs, as was shown by Bienstock [1]. In [2] the problem
was shown to be solvable in polynomial time for planar graphs. In fact we show
that for any fixed compact surface S the problem:

(2) given: an undirected graph G = (V, E) embedded on S and
two vertices r and s of G|

find: a maximum number of r — s paths in G any two of
which form an induced circuit;

is solvable in polynomial time.
Our method uses a variant of a method developed in [3] to derive, for any
fized k, a polynomial-time algorithm for the k disjoint paths problem in directed
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planar graphs. (This problem is NP-complete for general directed graphs, even
for k = 2.) The present method is based on cohomology over free boolean groups.

2. Free boolean groups

The free boolean group By is the group generated by g1, g2, - - -, gk, With rela-
tions g2 = 1 for j = 1,...,k. So By consists of all words bybs ...b; where t >0
and by, ...,b; € {g1,...,gx} such that b; # b;_; fori = 2,...¢. The product z-y
of two such words is obtained from the concatenation xy by deleting iteratively
all occurrences of any pair g;g;. This defines a group, with unit element 1 equal
to the empty word 0.

We call g1, ..., gr generators or symbols. Note that

(3) 31CBQCB3C-".

The size |z| of a word z is the number of symbols occurring in it, counting
multiplicities. A word y is called a segment of word w if w = zyz for certain
words z,z. If w = yz for some word z, y is called a beginning segment of w,
denoted by y < w. This partial order gives trivially a lattice if we extend B
with an element oo at infinity. Denote the meet and join by A and V.

We prove two useful lemmas.

LEMMA 1. For all z,y,z € By one has:

(4) t<y-zandz<y lz<=zty-z=10ry=zwz!
for some word w.

Proof. <= being easy, we show =>. Let w :=z71.y-2. Asz <y-2,y 2 = zw;
andas z <y~ l-z,y!'-2=z2w!, that is, z7! -y = wz~!. Hence if w # 1 then
zwzl=z¢-w-z"l=y. |
LEMMA 2. Let x,y € B. If © £ y then the first symbol of x~! is equal to the
first symbol of z71 - y.

Proof. Let z :== 2 Ay. So 27! -y is the concatenation of ™! - z and 27! - y.
Since 71z # 1, the first symbol of ™1 - y is equal to the first symbol of 271 - z.
Since 271z # 1 and z < z, the first symbol of 27! - z is equal to the first symbol
of z~!. Hence the first symbol of ™! is equal to the first symbol of z7%-y. 1

3. The cohomology feasibility problem for free boolean groups

Let D = (V, A) be a weakly connected directed graph, let » € V, and let (G, -)
be a group. Two functions ¢,% : A — G are called r-cohomologous if there
exists a function f:V — G such that

(5) (i) flr)=1;
(ii) ¥(a) = f(u)~1- ¢(a) - f(w) for each arc a = (u,w).
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This clearly gives an equivalence relation.
Consider the following cohomology feasibility problem (for free boolean groups):

(6) given: a weakly connected directed graph D = (V, A), a
vertex r, and a function ¢ : A — By;

find: a function % : A —— By such that ¥ is r-
cohomologous to ¢ and such that [¢(a)| < 1 for each
arc a (if there is one).

We give a polynomial-time algorithm for this problem. The running time of the
algorithm is bounded by a polynomial in |A| + ¢ + k, where ¢ is the maximum
size of the words ¢(a) (without loss of generality, o > 1).

We may assume that with each arc a = (u,w) also a™! := (w,u) is an arc of
D, with ¢(a™!) = ¢(a)~ L.

Note that, by the definition of r-cohomologous, equivalent to finding a 1 as in
(6), is finding a function f:V — By satisfying:

() @) f(r)=1;
(ii) for each arc @ = (u,w): |f(u)™! - ¢(a) - f(w)] < 1.

We call such a function f feasible.
It turns out to be useful to introduce the concept of ‘pre-feasible’ function. A
function f : V — By is pre-feasible if

(8) () flr)=1;
(ii) for each arc a = (u,w): if |f(u)™!- da) - f(w)] > 1
then ¢(a) = f(u)yf(w)~* for some word .

Pre-feasibility behaves nicely with respect to the partial order < on the set
BY of all functions f : V — By induced by the partial order < on By as:
f Lg% f(v) <g(v) for each v € V. It is easy to see that BY forms a lattice if
we add an element oo at infinity. Let A and V denote the meet and join. Then:

PROPOSITION 1. If fi and fao are pre-feasible, then so is f := f1 A fa.

Proof. Clearly f(r) = 1. Suppose |f(u)~! - ¢(a) - f(w)| > 1 for some arc
a = (u,w). We show ¢(a) = f(u)yf(w)™! for some y. By (4) we may assume
by symmetry that f(u) £ ¢(a) - f(w). Since f(w) = f1(w) A fa(w), there is an
i € {1,2} such that f(u)"!-¢(a)- fi(w) contains f(u)~!-d(a)- f(w) as a begin-
ning segment. Without loss of generality, ¢ = 1. So |f(u)™! - ¢(a) - fi(w)| >
1. As f(u) £ ¢(a)- f(w), by Lemma 2, the first symbols of f(u)~! and
fu)™t-¢(a) - f(w) are equal. Since f(u)~'-¢(a)- f(w) < f(u)™!-¢(a) - f1(w), it
follows that the first symbols of f(u)~! and f(u)~! - ¢(a) - fi(w) are equal.
So fi(u)™! - @(a) - fi(w) contains f(u)~! - ¢(a) - fi(w) as segment. Hence
fi(w)7! - ¢(a) - fi(w)| > 1. As fi is pre-feasible, ¢(a) = fi(u)y fi(w)~! for
some y'. Since f(u) < fi(u) and f(w) < fi(w) this implies ¢(a) = f(u)yf(w) !
for some y.
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So for any function f : V — By there exists a unique smallest pre-feasible
function f > f, provided there exists at least one pre-feasible function g > f. If
no such g exists we set f := co. In the next section we show that f can be found
in polynomial time for any given f.

We first note:

PROPOSITION 2. If f is finite then

(9) @ f(r)=1
(i) |f(v)| < (o + 1)|V| for each vertez v;

(iit) f(u) < @(a)- f(w) or f(w) < ¢(a)™" - f(u) for each
arc a = (u,w) with |f(u)™ - ¢(a) - f(w)| > 1.

Proof. Let f be finite. Trivially f(r) < f(r) = 1. Moreover, let a1, ...,a; form
a simple path from r to v. By induction on t one shows | f(v)| < (o+1)t. (Indeed,
let a; = (u,v). If | f(u )t ¢(a)- f(v)| <1 then by induction If( ) < (e+1)(t-1),
and hence /()] < 7(u)] + 6(a)] + 1 < (o + Dt. I |F(w) ™" - (a) - f(v)| > 1
then by (8) f(v) is a segment of ¢(a) and hence |f(v)| < o < (o + 1)t.) So
If@I < 1F )] < (e +DIV].

To see (iii), assume that f(u) £ ¢(a) - f(w) and f(w) £ #(a™?!) - f(u). So by
Lemma 2 the first symbol of f(u)~! - ¢(a) - f(w) is equal to the first symbol of
f(u)~1. Similarly, the last symbol of f(u)~!-¢(a)- f(w) is equal to the last symbol
of f(w). Since f(u )<f(u) and f(w) < f(w), 1t follows that f(u)~!-¢(a) f(w)
is a segment of f(u)~!- ¢(a) - f(w) So |f(u)~t-o(a) - f(w)| > 1. As fis pre-
feasible this implies that #(a) = fluw)yf(w)™? for some y. Hence, since f < f,

#(a) = f(u)y f(w)~?! for some y'. So f(u) < f(u)y' = ¢(a) - f(w), contradicting
our assumption. 1

4. A subroutine finding f

Let input D = (V, A), 7, ¢ for the cohomology feasibility problem (6) be given.
We may assume that for any arc a = (u,w) , a~* = (w, u) is also an arc of D,
with ¢(a™') = ¢(a)~!. Let moreover f:V — By be given.

If f is pre-feasible output f := f. If f violates (9) output f := co. If none of
these applies, perform the following iteration:

Tteration: Choose an arc a = (u,w) satisfying |f(u)™' - ¢(a) - f(w)| > 1 and
f(w) € é(a)™ - f(u). (Such an arc exists by (4). As (9)(iii) is not violated, we
know f(u) < ¢(a) - f(w).)

Let z be obtained from ¢(a)- f(w) by deleting the last symbol; reset f(u) := z,

and iterate.

PROPOSITION 3. At each iteration, Y, | f(v)| strictly increases.
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Proof. Since f(u) < é(a) - f(w) and |f(u)~! - ¢(a) - f(w)| > 1, z is strictly
larger than the original f(u). |

This directly implies:
PROPOSITION 4. After at most (o + 1)|V|? iterations the subroutine stops.

Proof. After (
|

+ 1)[V|? iterations, by Proposition 3 there exists a vertex u
such that |f(u)] > (

o
> (0 + 1)|V]|. Then (9)(ii) is violated. |

Moreover we have:

PROPOSITION 5. In the iteration, resetting f does not change f.

Proof. We must show that z < f(u) if f is finite. If there exists y such that
¢(a) = f(w)yf(w)~! then

(10) fw) £ fw) < flw)y™ = ¢(a)™" - fu) < ¢la)™" - f(w)

(since f(u) < f(u) < ¢(a)). This contradicts the choice of a in the iterations.
Therefore, since f is pre-feasible, we know |f(u)~! - ¢(a) - f(w)| < 1.

Since f(w) £ ¢(a™')-f(v), by Lemma 2 the last symbol of f(u)™!-¢(a)- f(w) is
equal to the last symbol of f(w). Hence (since f(w) < f(w)) f(u)™¢(a)- f(w) <
fw)™' - ¢(a) - f(w). Since f(u) < ¢(a) - f(w) it follows that ¢(a) - f(w) <

#(a) - f(w). Let y be obtained from ¢(a) - f(w) by deleting the last symbol.
Then z < y < f(u), since |f(u)™! - ¢(a) - f(w)| < 1. i

5. Algorithm for the cohomology feasibility problem

Let input D = (V, A),r, ¢ for the cohomology feasibility problem (6) be given.
Again we may assume that for each arc a = (u,w), a”! = (w,u) is also an arc,
with ¢(a™!) = ¢(a) ™. We find a feasible function f (if there is one) as follows.

Let W be the set of pairs (v, z) withv € V and = € By such that there exists an
arc a = (v,w) with 1 # z < ¢(a). For every (v,x) € W let f, » be the function
defined by: f, .(v) := z and f, (v") := 1 for each v' # v. Let E be the set of
pairs {(v, z), (v/,2')} from W for which f, ; V fis o is finite and pre-feasible. Let
E’ be the set of pairs {(u, ), (w,z)} from W for which there is an arc a = (u, w)
with ¢(a) = zz7!. We search for a subset X of W such that each pair in X
belongs to E and such that X intersects each pair in E’. This is a special case
of the 2-satisfiability problem, and hence can be solved in polynomial time.

ProOPOSITION 6. If X ezists then the function f = \/ foz is feasible. If X

(v,z)eX
does not exist then there is no feasible function.

Proof. First assume X exists. Since fv,mv fvl,zf is finite and pre-feasible for each
two (v,z), (v',2’) in X, f is finite and f(r) = 1. Moreover, suppose |f(u)~!-¢(a)-
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f(w)| > 1 for some arc a = (u, w). By definition of f there are (v,z), (v',2') € X
such that f(u) = fuz(v) and f(w) = fu o (w) for (v,z),(v',2') € X. As
fox V fur o i8 pre-feasible, ¢(a) = fy,o(w)yfor o (w) ™" for some y. Then |y| > 1.
Split y = be™! with b and ¢ nonempty. Then (u, f(u)b) € X or (w, f(w)c) € X
since X intersects each pair in E'. If (u, f(u)b) € X then f(u)b= f, ru)(u) <
Fupup(u) < f(u), a contradiction. If (w, f(w)c) € X one obtains similarly a
contradiction.

Assume conversely that there exists a feasible function f. Let X be the set
of pairs (v,z) € X with the property that z < f(v). Then X intersects each
pair in E'. For suppose that for some arc a = (u,w) with ¢(a) = 227! and
2 # 1 # 2 one has (u,z) € X and (w,2) € X, that is, z £ f(u) and 2z € f(w).
This however implies | f(u)™* - ¢(a) - f(w)] > 2, a contradiction.

Moreover, each pair in X belongs to E. For let (v,x), (v/,z') € X. We show
that {(v,z), (v/,2')} € E, that is, f' := fuz V fur o 1s pre-feasible. As f, . < f
and fy o < f, f is finite and f'(r) = 1. Consider an arc a = (u,w) with
|/ (u)~!-6(a)- f'(w)| > 1. We may assume f’'(u) = fus(u) and f'(w) = for zr (w)
(since fy » and fyr o themselves are pre-feasible). To show ¢(a) = f'(u)yf'(w) ™!
for some y, by (4) we may assume f'(w) £ ¢(a™!) - f'(u). So by Lemma 2, the
last symbol of f'(u)~! - ¢(a) - f/(w) is equal to the last symbol of f/(w).

Suppose now that f'(u) € ¢(a) - f'(w). Then by Lemma 2, the first symbol
of f/(u)~!- ¢(a) - f'(w) is equal to the first symbol of f'(u)~!. Since f' < f
this implies that f/(u)~! - ¢(a) - f'(w) is a segment of f(u)™! - #(a) - f(w). This
contradicts the fact that [f(u)~! - ¢(a) - f(w)] < 1.

So f'(u) < ¢(a)-f'(w). As for,ar(u) < f'(u) and |f' ()™ ¢(a)- f'(w)| > 1it fol-
lows that |fur o/ (u) "1 ¢(a) f'(w)| > 1. As f'(w) = for o (w) we have | for o (u)™!-
$(a)- for o ()] > 1. AS for o is pre-feasible, ¢(a) = For o (W)y for 2 (w) ™! for some
y. So f'(u) < ¢(a) f'(w) = fur,or(u)y. Hence for o (u)y = f'(u)y’ for some y'.
It follows that ¢(a) = f'(u)y' f'(w) ™ . ]

Thus we have:

THEOREM 1. The cohomology feasibility problem for free boolean groups is solu-
able in time bounded by a polynomial in |A] + o+ k.

6. Graphs on surfaces and homologous functions

Let G = (V, E) be an undirected graph embedded in a compact surface. For
each edge e of G choose arbitrarily one of the faces incident with e as the left-
hand face of e, and the other as the right-hand face of e. (They might be one
and the same face.) Let F denote the set of faces of G, and let R be one of the
faces of G. We call two functions ¢, : E — By R-homologous if there exists
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a function f : F — By such that

(11) (i) f(R)=1;
(ii) f(EF)™1-g(e)- f(F') = y(e) for each edge e, where
F and F’ are the left-hand and right-hand face of e
respectively.

The relation to cohomologous is direct by duality. The dual graph G* =
(F, E*) of G has as vertex set the collection F of faces of G, while for any edge
e of G there is an edge e* of G* connecting the two faces incident with e. Let
D* be the directed graph obtained from G* by orienting each edge e* from the
left-hand face of e to the right-hand face of e. Define for any function ¢ on E
the function ¢* on E* by ¢*(e*) := ¢(e) for each e € E. Then ¢ and ¢ are
R-homologous (in G), if and only if ¢* and ¢* are R-cohomologous (in D*).

7. Enumerating homology classes

Let G = (V, E) be an undirected graph embedded in a surface and let 7,5 € V,
such that no loop is attached at r or s. We call a collection I = (P, ..., Py) of
r — s walks an r — s join (of size k) if:

(12) (i) each P; traverses r and s only as first and last vertex
respectively;
(ii) each edge is traversed at most once by the P, ..., Py;

(ili) P; does not cross itself or any of the other Pj;

(iv) Py, ..., Py occur in this order cyclically at .

Note that any solution of (2) can be assumed to be an r — s join.
For any r — s join [1 = (P, ..., Px) let ¢n1 : E — By be defined by:

(13) on(e) :=g; if walk P; traversese (i =1,...,k);
:=1 if e is not traversed by any of the P,.

Let R be one of the faces of G. Note that if ¢ is R-homologous to ¢y then for
each vertex v # r, s we have

(14) pler)™ - ... - pler) =1,

where Fy, ey, Fi, ..., F;_1,e, F; are the faces and edges incident with v in cyclic
order (with F; = Fp), and where ¢; := +1 if F;_; is the left-hand face of e; and
F; is the right-hand face of e;, and ¢; := —1 if F;_; is the right-hand face of

e; and F} is the left-hand face of e;. (If Fj_; = F; we should be more careful.)
This follows from the fact that (14) holds for ¢ = ¢ and that (14) is invariant
for R-homologous functions.
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We now consider the following problem:

(15) given: a connected undirected graph cellularly embedded
on a surface S, vertices r, s of G, such that G —{r, s}
is connected and r and s are not connected by an
edge, a face R of G, and a natural number k;

find: functions ¢y,...,¢x : E — By, such that for each
r — s join II of size k, ¢r1 is R-homologous to at least

one of ¢1,...,0nN.

(A graph is cellularly embedded if each face is homeomorphic with an open disk.)

THEOREM 2. For any fized surface S, problem (15) is solvable in time bounded
by a polynomial in |V| + |E|.

Proof. If e is any edge connecting two different vertices # r, s, we can contract
e. Any solution of (15) for the modified graph directly yields a solution for the
original graph (by (14)). So we may assume V = {r,s,v} for some vertex v.
Similarly, we may assume that G has no loops that bound an open disk.

Call two edges parallel if and only if they form the boundary of an open disk
in S not containing R. Let p be the number of parallel classes and let f’ denote
the number of faces that are bounded by at least three edges. So 2p > 3f'. By
Euler’s formula, 4 + f' > p + x(S), where x(S) denotes the Euler characteristic
of S. This implies 12 + 2p > 124 3f' > 3p + 3x(S) and hence p < 12 — 3x(9).
That is, for fixed S, p is bounded.

Let E’ be a subset of E containing one edge from every parallel class. Note
that any Bj-valued function on E is R-homologous to a Bg-valued function that
has value 1 on all edges not in E’.

Let IT = (Py,...,P;) be an 7 — s join such that no Pi traverses two edges e, e’
consecutively that are parallel. For any path’ e,v,e’ in E’ of length two, with
e and €' incident with vertex v and e and €’ not parallel, let f(Il,e,v,€’) be
the number of times the P; contain &, v, €, for some € parallel to e and some ¢’
parallel to ¢’. (Here e or €’ is assumed to have an orientation if it is a loop.)

Now up to R-homology and up to a cyclic permutation of the indices of
Py, ..., Py, IIis fully determined by the numbers f(Il, e,v,e’). This follows
directly from the fact that the P; do not have (self-)crossings.

So to enumerate ¢1, ..., ¢y it suffices to choose for each path e, v, e’ a number
g(e,v,€') < |E|. Since |E’| = p < 9—3x(S) there are at most (| E|+1)12=3x($)*
such choices. For each choice we can find in polynomial time an r — s join II with
f(Le,v,e) = gle,v,e') for all e,v, ¢ if it exists. Enumerating the ¢p gives the
required enumeration. |

8. Induced circuits

THEOREM 3. For each fized surface S, there is a polynomial-time algorithm
that gives for any graph G = (V, E) embedded on S and any two vertices r,s of
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G a mazimum number of r — s paths each two of which form an induced circuit.

Proof. It suffices to show that for each fixed natural number k& we can find in
polynomial time k r — s paths each two of which form an induced circuit, if they
exist.

We may assume that G — {r, s} is connected, that r and s are not connected
by an edge, and that G is cellularly embedded. Choose a face R of G arbitrarily.

By Theorem 2 we can find in polynomial time a list of functions ¢1,...,¢n :
A — By, such that for each r — s join II, ¢51 is R-homologous to at least one of
the ¢j.

Consider the (directed) dual graph D* = (F, A*) of G (see Section 6). We
extend D* to a graph Dt = (F, AT) as follows.

For every pair of vertices F, F' of D* and every F — F' path 7 (not necessarily
directed) on the boundary of one face or of two adjacent faces of D*, extend the
graph with an arc a, from F to F’. (Note that there are only a polynomially
bounded number of such paths.) For each ¢ : A — By, define ¢* : AT — By

by 6*(e") = (e) and

(16) ¢T(ar) 1= dler)™ ... pler)
for any path = = (e])®* ... (ef)*t. (Here ey,...,6; € {+1,~1}.)
By Theorem 1 we can find, for each j = 1,..., N in polynomial time a function
¥ satisfying
(7) (i) ¥ is R-cohomologous to ¢;’ in Dt, and

(ii) |9(b)] <1 for each arc b of DT,

provided that such a 9 exists.

If we find a function 9, for ¢ = 1,..., k let Q; be a shortest r — s path traversing
only the set of edges e of G with ¥(e*) = g;. If such paths Q;, ..., Qx exist, and
any two of them form an induced circuit, we are done (for the current value of
k).
We claim that, doing this for all ¢y, ..., ¢n, we find paths as required, if they
exist. For let IT := (P, ..., Py) form a collection of k 7 — s paths any two of which
form an induced circuit. Since IT is an r — s join, there exists a j € {1,..., N}
such that ¢rr and ¢; are R-homologous.

We first show that there exists a function ¥ satisfying (17), viz. 9 := o1 To
see this, we first show that ¢[*1' is R-cohomologous to ¢;’ in D*. Indeed, ¢ and
@; are R-homologous in G. Hence there exists a function f : F — By such that
f(R) =1 and such that

(18) FE)Y - ¢n(e) - f(F') = ¢;(e)

for each edge e, where F and F’ are the left-hand and right-hand face of e
respectively. This implies:

(19) FR)TH-dfi(e”) - f(F') = 6] (e").
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Moreover, for every pair of vertices Fo, Fy of D* and every Fp — F; path m =
(e3)**...(ef)* in D* on the boundary of at most two faces of D* we have
(assuming (e})% runs from F;_; to F; fori=1,...,t):

(20) F(Fo)™" - ¢ri(ax) - F(F)
= (f(Fo)~" - ¢uler)™ F(F1)) - (f(F1)7" - ¢n(e2)™ f(F2)) -
o (F(Fee1) 7 - gmies)® f(FY))
=;(e1)" - dj(e2) - .. .- Bj(e)™ = ¢ (ax).

So ¢;; and qﬁj are R-cohomologous.

Next we show that |¢(b)| < 1 for each arc b of DT. Indeed, for any edge e
of G we have ¢f(e*) = ¢n(e) € {1,g1,...,9x}. So |¢fi(e*)] < 1. Moreover, for
any path m = (e1)%1(e2)%? ... (e;)* as above, ¢ (ax) = drr(e1) - --...-drles)=t.
Since there exist two vertices v',v"” of G such that each of ey, ..., e; is incident
with at least one of v/, 1", we know that there exists at most one 7 € {1,...,k}
such that P; traverses at least one of the edges ey, ..., e;. Hence there is at most
one generator occurring in ¢r(e1)®t - --...-¢n(es)ct. That is, |¢>ﬁ(a,,)| < 1. This
shows that ¥ := ¢j; satisfles (17).

Conversely, we must show that if  satisfies (17), then ¥ gives paths Qq, ..., Qx
as above. Indeed, since ¢ is R-cohomologous to qbﬁ, for each i = 1,...,k, the
set of edges e of G with ¥(e*) = g; contains an r — s path (since ¢ := ¢;] has
the property that the subgraph (V,{e € E|((e*) contains the symbol g; an odd
number of times}) of G has even degree at each vertex except at r and s, and
since this property is maintained under R-cohomology). Choose for each i such
a path @;. Suppose that, for some 7 # j, there exists an edge e = {v, v’} with
Q traversing v and Q; traversing v' (v,v’ &€ {r,s}). Then there exist faces Fy
and F; of G and an Fy — F; path m = (e;)°! ... (e;)®t in D* on the boundary of
the faces v and v’ of D* such that ¥(e})! - ...J(ef)t contains both symbol g;
and symbol g;. Now

(21) Yar) =0(e])® - ... V(€)%

since this equation is invariant under R-cohomology and since it holds when
is replaced by ¢f;. So ¥(an) contains both symbol g; and g;- This contradicts
the fact that |9(a,)| < 1.

So there is no edge connecting internal vertices of Q; and Q;. Replacing each
Q;: by a chordless path @] in G that uses only vertices traversed by Q;, we obtain
paths as required. ]

We refer to [4] for an extension of the methods described above.

Acknowledgement. I am grateful to Paul Seymour for very carefully reading
preliminary versions of this paper and for giving several helpful suggestions.



INDUCED CIRCUITS IN GRAPHS ON SURFACES 193

REFERENCES

1. D. Bienstock, private communication, 1989.

2. C. McDiarmid, B. Reed, A. Schrijver, and B. Shepherd, Induced circuits in planar
graphs, Report BS-R9106, CWI, Amsterdam, 1991.

3. A. Schrijver, Finding k disjoint paths in directed planar graphs, Report BS-R9206,
CWI, Amsterdam, 1992.

4. A. Schrijver, Disjoint paths in graphs on surfaces and combinatorial group theory,
preprint, 1991.

CWI, KRUISLAAN 413, 1098 SJ AMSTERDAM, THE NETHERLANDS,

AND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AMSTERDAM, PLANTAGE MUIDER-
GRACHT 24, 1018 TV AMSTERDAM, THE NETHERLANDS.

E-mail address: lex@cwi.nl



